Solutions to graded problems in Homework 10

Peyam Tabrizian

Monday, November 21st, 2011

4.9.3

As usual, $y(t)=y_{0}(t)+y_{p}(t)$.
Homogeneous solution:
The auxiliary polynomial is $r^{2}+9=0$, which gives $r= \pm 3 i$. Hence:

$$
y_{0}(t)=A \cos (3 t)+B \sin (3 t)
$$

Particular solution:
Guess:

$$
y_{p}(t)=A t \cos (3 t)+B t \sin (3 t)
$$

Note: We have to add an extra factor of t because the righ-hand-side of the equation $2 \cos (3 t)$ coincides with one of the roots $r=3 i$. Hence the name 'resonance term'. Also, if you plugged in the guess $A \cos (3 t)+B \sin (3 t)$ in the equation, you would get 0 , which cannot equal to $2 \cos (3 t)$.

If you plug in y_{p} into the differential equation, you get:

$$
\begin{array}{r}
y_{p}^{\prime \prime}+9 y_{p}=2 \cos (3 t) \\
(A t \cos (3 t)+B t \sin (3 t))^{\prime \prime}+9(A t \cos (3 t)+B t \sin (3 t))=2 \cos (3 t) \\
(A \cos (3 t)-3 A t \sin (3 t)+B \sin (3 t)+3 B t \cos (3 t))^{\prime}+9(A t \cos (3 t)+B t \sin (3 t))=2 \cos (3 t) \\
\left.-3 A \sin (3 t)-3 A \sin (3 t)-\underline{9 A t \cos (3 t)+3 B \cos (3 t)+3 B \cos (3 t) \cdots} \begin{array}{r}
\cdots-9 B t \sin (3 t)+9 A t \cos (3 t)+9 B t \sin (3 t)
\end{array}\right)=2 \cos (3 t) \\
-6 A \sin (3 t)+6 B \cos (3 t)=2 \cos (3 t) \\
6 B \cos (3 t)-6 A \sin (3 t)=2 \cos (3 t)+0 \sin (3 t)
\end{array}
$$

Equating coefficients, we get $6 B=2,-6 A=0$, which gives: $A=0, B=\frac{1}{3}$, whence:

$$
y_{p}(t)=\frac{1}{3} t \sin (3 t)
$$

General solution

Finally:

$$
y(t)=y_{0}(t)+y_{p}(t)=A \cos (3 t)+B \sin (3 t)+\frac{1}{3} t \sin (3 t)
$$

NOW plug in the initial conditions $y(0)=1, y^{\prime}(0)=0$ (not before) to get: $A=1, B=0$, and hence our final answer is:

$$
y(t)=\cos (3 t)+\frac{1}{3} t \sin (3 t)
$$

6.1.13

Consider the (pre)-Wronskian:

$$
\widetilde{W}(x)=\left[\begin{array}{cccc}
x & x^{2} & x^{3} & x^{4} \\
1 & 2 x & 3 x^{2} & 4 x^{3} \\
0 & 2 & 6 x & 12 x^{2} \\
0 & 0 & 6 & 24 x
\end{array}\right]
$$

Now choose $x=1$, and you get:

$$
\begin{aligned}
W(1)=\left|\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
0 & 2 & 6 & 12 \\
0 & 0 & 6 & 24
\end{array}\right| & =-6\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
0 & 2 & 12
\end{array}\right|+24\left|\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 3 \\
0 & 2 & 6
\end{array}\right| \\
& =-6\left(-2\left|\begin{array}{ll}
1 & 1 \\
1 & 4
\end{array}\right|+12\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|\right)+24\left(-2\left|\begin{array}{ll}
1 & 1 \\
1 & 3
\end{array}\right|+6\left|\begin{array}{ll}
1 & 1 \\
1 & 2
\end{array}\right|\right) \\
& =12 \neq 0
\end{aligned}
$$

Since the Wronskian is nonzero at 1 , the functions x, x^{2}, x^{3}, x^{4} are linearly independent on $(-\infty, \infty)$.

Note: There are two other slick ways of solving this problem:

1) The first one is to 'cancel' out x, and just show that $1, x, x^{2}, x^{3}$ are linearly independent. Then the Wronskian is much easier to compute.
2) Another way is to consider the bigger set $1, x, x^{2}, x^{3}, x^{4}$. Notice that those polynomials are linearly independent because $1, x, x^{2}, x^{3}, \cdots, x^{n}$ is linearly independent for every n, and x, x^{2}, x^{3}, x^{4} is a linearly independent subset of a linearly independent set, hence linearly independent!

6.2.9

The auxiliary polynomial is $r^{3}-9 r^{2}+27 r-27=0$.
Now by the rational roots theorem, the possible zeros of the polynomial are $r=$ $\pm 1, \pm 3, \pm 9, \pm 27$. Notice $r=3$ works.

Now use long division:

$$
X-3) \begin{array}{r}
X^{2}-6 X+9 \\
\frac{X^{3}-9 X^{2}+27 X-27}{-X^{3}+3 X^{2}} \\
\begin{array}{r}
-6 X^{2} \\
-27 X \\
-6 X^{2}-18 X \\
9 X \\
-9 X+27 \\
-97
\end{array}
\end{array}
$$

And you get $r^{3}-9 r^{2}+27 r-27=(r-3)\left(r^{2}-6 r+9\right)=(r-3)^{3}=0$, which gives $r=3$ with multiplicity 3 . Finally, we get:

$$
y(t)=A e^{3 t}+B t e^{3 t}+C t^{2} e^{3 t}
$$

6.2.25

Suppose:

$$
c_{0} e^{r x}+c_{1} x e^{r x}+\cdots+c_{m-1} x^{m-1} e^{r x}=0
$$

Then:

$$
e^{r x}\left(c_{0}+c_{1} x+\cdots+c_{m-1} x^{m-1}\right)=0
$$

Since $e^{r x} \neq 0$, we can cancel it out from the equation, and get:

$$
c_{0}+c_{1} x+\cdots+c_{m-1} x^{m-1}=0
$$

But the functions $1, x, x^{2} \cdots, x^{m-1}$ are linearly independent, hence:

$$
c_{0}=c_{1}=\cdots=c_{m-1}=0
$$

TA-DAAA!!! :)

